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Circles and
Parabolas

Sergey Markelov

This column is devoted to mathematics
Jor fun. What better purpose is there
Jor mathematics? To appear here,

a theorem or problem or remark does
not need to be profound (but it is
allowed to be); it may not be directed
only at specialists; it must attract

and fascinate.

We welcome, encourage, and
Sfrequently publish contributions
Jrom readers—either new notes, or
replies to past columns.

Please send all submissions to the
Mathematical Entertainments Editor,
Alexander Shen, Institute for Problems of
Information Transmission, Ermolovoi 19,
K-51 Moscow GSP-4, 101447 Russia;
e-mail:shen@landau.ac.ru

everal years ago, reading the
Problems section of the

American Mathematical Monthly, 1
came across the following problem:

Consider two parabolas: y = ax® +
br + ¢ and y = da® + ex + f, inter-

similar); for the same reasons ZY? =
ZP - ZQ,s0ZX = ZY.

It turns out that there are many
other examples of statements about
circles parallel to statements about
parabolas. Here is one:

secting in two points. Let [ be their
common chord, and m be the tan-
gent to both parabolas that touches
them at X and Y. Then [ intersects
m in the point Z, which is the mid-
point of XY (Figure 1).

FIGURE 1

The solution used some computations
in coordinates, and I started to think
whether a more geometrical one ex-
ists. Then I realized that there was a
similar problem about circles:

Consider two circles intersecting in
two points. Let [ be their common
chord, and m be the common tan-
gent touching circles at points X
and Y. Then [ intersects m in the
point Z that is the midpoint of XY
(Figure 2).

FIGURE 2
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The second problem has a simple so-
lution: it is well known that ZX2 =
ZP - ZQ (triangles ZPX and ZXQ are
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FIGURE 3

Let ABC be a triangle. Let point B’
lie somewhere on the line AC, point
C’ lie somewhere on AB, and point
A’ lie somewhere on BC. Then the
circles circumscribed around trian-
gles AB'C’, A'BC’, and A’'B'C have
a common intersection point
(Figure 3).
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FIGURE 4

The parallel statement about parabolas
reads as follows:

Let ABC be a triangle. Let point B’
lie somewhere on the line AC, point
C’ lie somewhere on AB, and point
A’ lie somewhere on BC. Then the
three parabolas going through the
points AB'C’ (the first one), A’BC’
(the second one), and A'B'C (the
third one) have a common intersec-
tion point (Figure 4).
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To give another example, we have to
extend our dictionary giving the cor-
respondence between notions related
to circles and parabolas. For example,
“concentric circles” should be trans-
lated as “parabolas with a common
axis obtained one from the other by a
shift along this axis”. This translation
is used in the following statements:

A line intersects concectric circles
at the four points A;, B), By, Ao
Then the segments A;B; and BsA,
are equal (Figure 5).

FIGURE 5

A line intersects “concentric” parabo-
las (in the sense explained above) at
the four points A,, Bj, B, Az. Then the
segments A;B; and BsAy are equal
(Figure 6).

FIGURE 6

Still another extension of our dictio-
nary would be the translation of an id-
iomatic expression “line goes through
the center of a circle”, which becomes
“line is parallel to the axis of a
parabola”. This translation is used in
the following statements:

If a circle is inscribed in a quadri-
lateral, then the midpoints of the di-
agonals and the center of the circle
lie on a straight line (Figure 7).

FIGURE 7
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(This statement is sometimes called
Newton’s theorem.) The parallel state-
ment for parabolas is:

Four tangents to a parabola inter-
sect to form a quadrilateral. Then
the line that goes through the mid-
points of the diagonals of the
quadrilateral is parallel to the axis
of the parabola (Figure 8).

FIGURE 8

These (and many other) examples
give us a strong feeling that there is
some general principle saying that
every true statement about circles (in
a certain language) can be translated
into a true statement about parabolas.
Unfortunately, it is not clear how to
formulate a precise general principle
of this type.

Instead, let us see how the state-
ment about parabolas can be derived
from the statement about circles.
Recall our first pair of statements; let
us prove that the common tangent
to two parabolas is divided into equal
segments by their common chord
(Figure 1).

Assume that it is not the case, and
the intersection point is not the mid-
point. A parabola can be approximated
by an ellipse that has one of its focuses
far away. Consider such ellipses for
both parabolas. The common chord of
the ellipses will be close to the com-
mon chord of the parabolas, and the
common tangent for the ellipses will be
close to the common tangent for the
parabolas. Therefore, if ellipses are
close enough to the parabolas, the
common chord to them will intersect
the common tangent not in the middle
point. One may assume both ellipses to
have the same ratio of axes. Then we
can apply an affine transformation to
transform the ellipses into two circles
for which the common chord does not
intersect the common tangent at the
midpoint, which is impossible. Q.e.d.

A similar argument can be applied
to other examples given above.

However, some additional tricks are
needed. For example, consider the
statement about the four tangents
(Figure 8). If we try to use the same
method, we come to a picture that dif-
fers from Figure 7: see Figure 9.

However, if the statement (saying
that the center of the circle and the
midpoints of diagonals lie on a straight
line) is true for Figure 7, it should be
also true for Fig. 9. The explanation
goes as follows. Consider polar coor-
dinates on the circle; let ¢1, ¢o, ¢3, P4
be the angle coordinates of the tangent
points. Then the coordinates of all
other points are rational functions of
sin ¢y, cos ¢y, sin ¢s, cos ¢y, etc. Using
the substitution ; = tan(¢y/2), we see
that the coordinates of all points are
rational functions of iy, t, t3, {4. The
statement in question (three points lie
on a straight line) is an identity in-
volving those coordinates. Therefore,
if it is true in the neighborhood of some
point (as Figure 7 shows), it should be
true for all values of ¢;, and therefore
also for the Fig. 9 configuration.
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Letter to the Column Editor

In your article on 3-dimensional proofs
of planar theorems, one of my favorite
examples of that kind was missing. Do
you know the following 3-dimensional
proof of Brianchon’s Theorem (saying
that the main diagonals of a hexagon
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circumscribed about a circle meet at
one point)?

Proof: Consider the circle as a plane
section going through the center of a
hyperboloid of one sheet. There are
two families of straight lines on the hy-
perboloid, say A and B, such that
through every point on the hyperboloid
passes exactly one line of each family,
and every line in family A meets every
line in family B. Let 1, 2, ..., 6 be the
six points where the sides of the hexa-
gon are tangent to the circle. Consider
the lines [y, ..., lg that lie on the hy-
perboloid and pass through 1, ..., 6,
respectively. Lines I;,l3,l5 are in family
A and ly,l4,lg are in family B. Since the
neighbor lines are in different families,
they intersect to form a 3-dimensional
hexagon; its top view is our original
hexagon. (The vertices of this 3-di-
mensional hexagon are denoted by 12,
23, 34, 45, 56, 61 in the sequel.)

Consider now lines I; and l;. They
belong to different families, so they in-
tersect each other and lie in some
plane py4. Planes pos and psg are de-
fined in a similar way. Now let us look
at the intersection line of planes pyy
and pss. Points 12 and 45 lie on both
planes, so the intersection of these two

planes is the diagonal 12-45. Since we
have three planes, there are three in-
tersection lines (1245, 23-56, 34-61),
and the point @ where the three planes
meet is the point where these three
lines meet. The top view of each of
these lines is a main diagonal of our
original plane hexagon, hence the top
view of @ is the point where the main
diagonals meet.

There is a version of this proof
which works for all fields k& of charac-
teristic # 2 (“circle” must be replaced
by “conic”; in characteristic 2 the
Brianchon theorem makes no sense,
since in that case all the tangent lines
to a conic meet at one point and hence
the diagonals of a circumscribed hexa-
gon are not defined). Suppose that we
have a conic C in a projective plane P2
over k. We may assume that k is alge-
braically closed, that P2 lies in the 3-
dimensional projective space P? with
homogeneous coordinates (x:y:2:w),
that P2 is given by the equation x +
w = 0, and that the conic C is the in-
tersection of the “hyperboloid” H given
by the equation xw — yz = 0 with P2.
Writing every point (x:y:2:w) € PPasa
matrix with the rows (xy) and (zw), we
see that points of P3 correspond to

Soliloquy
John B. Thoo

To use a calculator, or not to use a calculator, that is the question:
Whether ’tis nobler in the mind to suffer

The slings and arrows of outrageous paper and pencil computations,
Or to take arms against a sea of troubles,

And by opposing, end them. To long multiply, to long divide—

No more, and by using a calculator to say we end

The heart-ache and the thousand natural shocks

That paper and pencil computations are heir to, 'tis a consummation

Devoutly to be wish’'d.

Mathematics Department
Yuba College

Marysville, CA 95901-7699
USA
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FIGURE 10

non-zero 2 X 2 matrices X, considered
up to a scalar factor. In terms of ma-
trices the equation of H is det X = (;
the equation of the plane P2 is Tr X =
0; and the equation of their intersec-
tion C is X2 = 0. There are two fami-
lies of lines on H, say A and B, and
every tangent plane to H intersects H
in the union of an A-line and a B-line.
For every point on C, represented by a
(nilpotent) matrix Xy, the equation of
the plane tangent to H at this point is
Tr XX, = 0. Since TrX; = 0, scalar ma-
trices satisfy this equation. Thus all
planes tangent to H at points of C pass
through the point E € P represented
by scalar matrices. Now we can repeat
the above proof: given a hexagon S in
P2 whose sides are tangent to C, con-
struct a 3-dimensional hexagon S’, us-
ing in turn A- and B-lines, such that S
is the projection of §’ from E onto P2,
(In the real case considered above, K
was the point at infinity in the direc-
tion of the axis of the hyperboloid.
Note that the assumption char k # 2
implies that the point E is not on P2.)
The main diagonals of S’ meet at one
point, since the three planes pj4, p2s,
and pse through the opposite sides of
S’ meet at one point. It follows that the
main diagonals of S also meet at one
point.
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