Решение вступительной олимпиады по физике. 9 класс. 2025

1. Полет ядра

Пушка стреляет ядрами массой m=4 кг, и сразу после выстрела ядро имеет кинетическую энергию $E_0=9800$ Дж.

- А) Пусть ядро ударило в вертикальную башню замка, причем перед ударом скорость ядра направлена горизонтально. На какой высоте ударилось ядро, если к моменту удара его кинетическая энергия уменьшилась на 36 %?
- Б) Отскочив горизонтально, ядро потеряло 64 % от своей кинетической энергии перед ударом. Как далеко от башни упадет ядро? Сопротивление воздуха не учитывайте.

Ответ: A) 88,2 м (90 м при $g = 9.8 \text{ м/c}^2$). **Б)** 141,12 м (144 м при $g = 9.8 \text{ м/c}^2$).

Решение: А) По закону сохранения энергии (принимаем начальную потенциальную энергию за 0):

$$E_0+0=E_{\text{кин}1}+mgh$$
, где $E_{\text{кин}1}=(100\%-36\%)E_0=0.64E_0\Rightarrow mgh=0.36E_0\Rightarrow h=0.36E_0/mg$. (*)

Численно: $h=0.36\cdot\frac{9800}{4\cdot10}=88.2$ м. Если взять g=9.8 м/с², то h=90 м.

Б) По условию после отскока:
$$\frac{mv_2^2}{2} = (100\% - 64\%)E_{\text{кин1}} = 0.36E_{\text{кин1}} = 0.36 \cdot 0.64E_0 \Rightarrow v_2 = 0.48\sqrt{\frac{2E_0}{m}}$$
.

Эта скорость горизонтальна. Время падения находится из соотношения: $y = h - \frac{gt^2}{2} = 0 \Rightarrow t = \sqrt{\frac{2h}{g}}$. Тогда дальность по горизонтали удаления точки падения от стены:

$$l = v_2 t = 0.96 \sqrt{\frac{E_0 h}{mg}}.$$

Из (*) $E_0 = mgh/0.36 \Rightarrow l = 1.6h = 141.12$ м. Если взять g = 9.8 м/с 2 , то l = 144 м.

2. Маша и мороженое

Маша ест мороженое только растаявшим, хотя и хранит в морозильнике. Как-то Маша купила контейнер мороженого и заморозила его до определенной температуры, но затем её брат Петя вытащил контейнер и положил на батарею. Спустя время $t_1 = 12$ мин Маша обнаружила контейнер, съела всё растаявшее мороженое (его было по массе половина), убрав остальное в морозилку. Во 2-й раз Маша купила 4 таких же контейнера мороженого и так же заморозила, но Петя вытащил и поставил на батарею все четыре. Теперь Маша обнаружила контейнеры на батарее через $t_2 = 6$ мин и снова съела все растаявшее мороженое, которого оказалось по массе столько же, сколько в 1-й раз.

- А) Найдите температуру замерзшего мороженого. Считайте, что батарея греет каждый контейнер с одинаковой мощностью, а растаявшее мороженое очень хорошо проводит тепло.
- Б) В 3-й раз Маша поставила один контейнер замерзшего мороженого на стол, а сама увела Петю гулять. Сколько она должна гулять с братом, если хочет, придя, сразу съесть всё мороженое? Считайте, что на столе мороженое получает тепло в 5 раз медленнее, чем на батарее.

Если нужно: удельные теплоемкости замерзшего мороженого $c_{\rm M}=$ 2,0 $\frac{\rm Дж}{\rm r\cdot ^{\circ}C}$, растаявшего $c_{\rm p}=$ 4,0 $\frac{\rm Дж}{\rm r\cdot ^{\circ}C}$, удельная теплота плавления мороженого $\lambda = 320 \, \frac{\text{Дж}}{\text{г}}$. Мороженое плавится при $T_0 = 0 \, ^{\circ} C$.

Ответ: A) $-40^{\circ}C$. **Б)** 100 мин.

Решение: A) Пусть мощность нагрева батареей одного контейнера массы m равна P. Эта мощность пошла на нагрев всей массы мороженого от начальной температуры $-T^{\circ}C$ до температуры таяния $0^{\circ}C$, и плавление массы $\frac{m}{2}$.

Записываем уравнение теплового баланса для первого случая: $Pt_1 = cmig(0-(-T)ig) + \lambda rac{m}{2}$ или

$$Pt_1 = cmT + \lambda \frac{m}{2}. (1)$$

Во втором случае контейнеров 4, мощность их общего нагрева батареей 4P, но плавится снова $\frac{m}{2}$:

$$4Pt_2 = 4cmT + \lambda \frac{m}{2}. (2)$$

Поделив уравнение (2) на уравнение (1) получим:

$$\frac{4t_2}{t_1} = \frac{4cT + \frac{\lambda}{2}}{cT + \frac{\lambda}{2}}.$$

Из этого соотношения можно найти неизвестное T или сразу подставив числа или перемножив перекрестные члены пропорции и решив уравнение относительно T: $T = \frac{\lambda}{8c} \frac{4t_2 - t_1}{t_1 - t_2}$. Подставляя числа:

$$T = \frac{320000}{8 \cdot 2000} \cdot \frac{4 \cdot 6 - 12}{12 - 6} = 40^{\circ} C.$$

Б) Запишем условия таяния всей массы контейнера мороженного m при условии мощности $\frac{1}{5}P$:

$$\frac{1}{5}Pt = cmT + \lambda m. \tag{3}.$$

Решаем совместно уравнения (1), (2) и (3). Например, вычитая из уравнения (3) уравнение (1) получим $\frac{1}{5}Pt - Pt_1 = \lambda \frac{m}{2}$, а вычитая из учетверенного уравнения (1) уравнение (2) получим: $4Pt_1 - 4Pt_2 = 3\lambda \frac{m}{2}$.

Поделив эти уравнения друг на друга, получим $\left(\frac{1}{5}t-t_1\right)/(4t_1-4t_2)=1/3$, откуда

$$t = 5\left(\frac{7}{3}t_1 - \frac{4}{3}t_2\right) = 100$$
 мин.

3амечание: из условий задачи нельзя по отдельности найти массу контейнера m и мощность его нагрева P.

3. Силачи-толкачи

На дорожке со специальным покрытием Никита, прикладывая свою максимальную горизонтальную силу, может сдвинуть легкий контейнер с грузом $m_1 = 600$ кг, а Петя – такой же контейнер с грузом $m_2 = 800$ кг. В контейнеры обоих силачей нагрузили по m = 400 кг, и они, прикладывая каждый свою максимальную силу, толкают их от точки старта вдоль дорожки в течение времени t = 6 с. Каким будет расстояние между контейнерами, когда контейнеры остановятся? Коэффициент трения контейнеров о дорожку $\mu = 0.3$, силачи прикладывают постоянную силу.

Ответ: 67,5 м.

Решение: Если тело на горизонтальной поверхности имеет массу M, то его сила реакции опоры N = Mg, а $F_{\scriptscriptstyle
m T} = \mu M g$. Тем самым максимальная горизонтальная сила Никиты, максимальная сила трения позволяющая сдвинуть ему контейнер с его максимальным грузом, равна $F_1 = F_{T1} = \mu m_1 g$, максимальная сила Пети – $F_2 = F_{T2} = \mu m_2 g$.

Напишем 2-й закон Ньютона по горизонтали и найдем ускорения груза m, когда его толкает горизонтально кто-то из силачей: $F_1-F_{_{\rm T}}=ma_1$ для Никиты и $F_2-F_{_{\rm T}}=ma_2$ для Пети, то есть: $\{\mu m_1g-\mu mg=ma_1, \\ \mu m_2g-\mu mg=ma_2. \}$

$$\begin{cases}
\mu m_1 g - \mu m g = m a_1, \\
\mu m_2 g - \mu m g = m a_2.
\end{cases}$$

Получаем

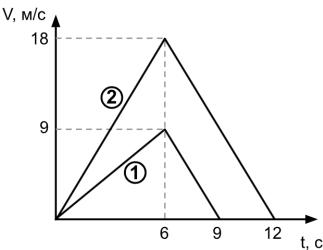
 $a_1 = \mu g(m_1 - m)/m = 0.5 \mu g = 1.5 \text{ m/c}^2, a_2 = \mu g(m_2 - m)/m = \mu g = 3 \text{ m/c}^2$

За время t=6 с каждый из контейнеров с грузом достигает своей максимальной скорости $v_1=a_1t=9\frac{\text{м}}{\text{c}},$ и $v_2=a_2t=18\frac{\text{m}}{\text{c}},$ а затем оба тормозят с одинаковым ускорением $a=-\frac{F_{\text{T}}}{m}=-\mu g=-3\frac{\text{m}}{\text{c}^2}.$

До остановки у них еще проходит время $t_1 = -\frac{v_1}{a} = 3$ с и $t_2 = -\frac{v_2}{a} = 6$ с соответственно.

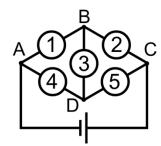
Нарисуем графики зависимости скоростей обоих контейнеров от времени (см. рис), и через площадь под графиками найдем перемещение каждого $S_1 = 1/2 \cdot 9 \cdot 9 = 40,5$ м и $S_2 = 1/2 \cdot 12 \cdot 18 = 108$ м.

Расстояние между контейнерами станет $S = S_2 - S_1 = 108 - 40,5 = 67,5$ м.



4. Лампочки

На схему из разных лампочек (см. рисунок) подано напряжение $U=12~\mathrm{B}$. При этом напряжения на участках AB и CD соответственно равны $U_{AB} = 3$ B и $U_{CD} = 4$ B. Оказалось, что все лампочки под номерами 1, 3 и 5 имеют в схеме одинаковую мощность P = 12 Вт.



- А) У какой из лампочек с нечетными номерами наибольшее сопротивление?
- Б) У какой из всех лампочек в схеме наименьшая мощность?

Ответ: А) лампочка №3. Б) лампочка №4.

Решение: А) Запишем соотношения между напряжениями:

$$U_{CB} + U_{BA} = U \Rightarrow U_{CB} = U - U_{BA} = 9 \text{ B},$$

 $U_{CD} + U_{DB} = U_{CB} \Rightarrow U_{DB} = U_{CB} - U_{CD} = 5 \text{ B},$
 $U_{DA} = U - U_{CD} = 8 \text{ B}.$

3нак напряжения показывает направление протекания тока - через 3 лампочку ток течет от D к B (во всей цепи от $C \kappa A$)

Итак, мы нашли напряжения на всех лампочках: $U_1 = U_{BA} = 3$ В, $U_2 = U_{CB} = 9$ В, $U_3 = U_{DB} = 5$ В, $U_4 = U_{DA} = 8 \text{ B}, U_5 = U_{CD} = 4 \text{ B}.$

Мощность на лампочке $P = U^2/R$, поэтому $R = U^2/P$. Если мощности на лампочках с нечетными номерами равны, то у (нечетной) лампочки с наибольшим напряжением наибольшее сопротивление. Таким образом, это лампочка №3.

Б) Найдем токи на лампочках №1, №3 и №5:
$$P = UI \Rightarrow I = \frac{P}{U}$$
, откуда:
$$I_1 = \frac{P}{U_1} = \frac{12}{3} = 4 \text{ A}, \qquad I_3 = \frac{P}{U_3} = \frac{12}{5} = 2,4 \text{ A}, \qquad I_5 = \frac{P}{U_5} = \frac{12}{4} = 3 \text{ A}.$$

В узел B втекают токи I_2 и I_3 и вытекает ток I_1 , поэтому: $I_1=I_2+I_3$, откуда $I_2=I_1-I_3=4-2$, $I_3=4-2$ Аналогично для узла D: $I_3 + I_4 = I_5$, откуда $I_4 = I_5 - I_3 = 3 - 2,4 = 0,6$ A.

Мощности на лампочках:

$$P_2 = U_2 I_2 = 9 \cdot 1,6 = 14,4 \text{ BT},$$

$$P_4 = U_4 I_4 = 8 \cdot 0.6 = 4.8 \text{ Bt.}$$

Поскольку по условию $P_1 = P_3 = P_5 = P = 12$ Вт, то наименьшая мощность у лампочки №4.